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STRESS ANALYSIS OF BRIDGE DECKS

A. COULL

Department of Civil Engineering, University of Southampton, England

Abstract-The direct determination of the bending and twisting moments, and shear forces, in orthotropic
bridge decks is considered in this paper. The partial differential equation of plate theory is reduced to a set
of ordinary linear differential equations, in sets of two. each set containing two unknown functions only.
by the assumption that the stress resultants may be expressed as Fourier series in the spanwise co-ordinate.
the coefficients of the series being functions of the transverse position only. The series are chosen to satisfy
the equilibrium conditions for the plate, the unknown coefficients being obtained by the Principle of Least
Work.
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co-ordinate axes
non-dimensional co-ordinates
span of bridge slab
semi-chord of slab
thickness of slab
l/rric
deflection of middle surface

elastic moduli defining stress41train relationships in orthotropic plates

flexural and torsional rigidities for orthotropic plate

strain energy coefficients

bending and twisting moments per unit length
shear forces per unit length of plate
intensity of applied load
operator d/d~

moment functions

INTRODUCTION

IN THE analysis and design of modem highway bridges, it has become necessary to consider
the effects of the heavy indivisible loads which are using the British road system in
increasing numbers. In order to achieve economic designs, an accurate assessment of the
load distribution in the bridge deck, due to such concentrated loads, is essential.

The analysis is generally carried out by replacing the physical composite slab by an
equivalent orthotropic plate or grid structure, which may then be treated by conventional
analytical methods. In the approach developed by Massonnet [1], a solution is obtained
by assuming that the deflected form of the plate may be represented by a one-dimensional
Fourier series;· by expressing the applied load as a similar series, the coefficients are ob
tained by equating corresponding terms in the governing biharmonic equation. The
moments and shear forces are determined subsequently by double and triple differentia
tion of the deflection function. However, it is well known that when deflections are
approximated, the stresses calculated by differentiation of the deflection function are in
greater error than the corresponding deflections.
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The purpose of the present paper is to illustrate a technique whereby the moments
and shear forces may be determined directly. The method is similar to Massonnet's
approach, except that assumed distributions of moments and shear forces are used
instead of an assumed deflection function.

The bending and twisting moments, and shear forces, are expressed as Fourier series
in the spanwise co-ordinate, the coefficients of the series being functions of the transverse
position only. The series are chosen to satisfy both the equilibrium equations and boundary
conditions for the plate, and the unknown coefficients are determined by minimization
of the strain energy. Considerable simplification is achieved by splitting the applied load
system into symmetrical and anti-symmetrical components.
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FIG. I. Bridge slab.

ANALYSIS

The structure considered is a thin elastic orthotropic bridge slab of uniform thickness,
simply supported on two opposite edges (Fig. 1).

For convenience, a set of non-dimensional co-ordinates, ("" ~), is used, defined with
reference to Fig. I as .

7l:X

", = I' (1)

(2)

The stress resultants in the plate must obey the usual "small-deflection" equations of
equilibrium, which become, in terms of the non-dimensional co-ordinate system,

7l: aM" loM"y S 0
T~-~ar-- ,,=

1 oMy 7l: oM"y S _ 0
~ar-T~- y-

~ oS,,+! oSY+P = 0
1 0", C a~

where M", My and M"y are the bending and twisting moments respectively, S" and Sy
are the shear forces, all per unit length of plate, and p is the intensity of applied loads.
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(3)

(4)

If shear deformations are considered in the analysis, the physically correct boundary
conditions of Reissner [2] may be utilized These become

(i) along the free edges, e= ± 1,

My = M xy = Sy = 0

(ii) along the simply supported edges, '1 = 0, 11:,

W = M x = M xy = 0

where w is the deflection of the middle-surface of the slab.

If shear deformations are neglected, the usual conditions of Kirchhoff [2] must be
used; these are

(i) along the free edge, e= ± 1,

M = S _!:. oMxy = 0
y y 1 0'1

(ii) along the simply-supported edges, '1 = 0, 11:,

M x = w = o.

(5)

(6)

The general moment-{;urvature relationships for an orthotropic slab may be written
as [2]

Mx= - (Dx~:~ +Dl~:~)

My = - 01~:~ +Dy~:~)
02W

M xy = 2Dxyoxoy

(7a)

(7b)

(7c)

where Dx ' Dy, D1 and Dxy are the flexural and torsional rigidities for an orthotropic
plate.

In this case, as w vanishes along the supported edges, the transverse curvature 02W/ oy2

is zero, and thus, from equation (7a), o2wjox2 is also zero if the normal moment Mx is
to vanish. Hence, froth equation (7b), the transverse bending moment My must also vanish
along a supported edge, and this may be used as an alternative boundary condition to a
vanishing deflection along the edges x = 0, b. This alternative condition is more approp
riate to the present analysis.

Any applied load system on the plate may always be expressed as a Fourier series of
the form

00

P = L Pi SInl'1
i= 1

(8)

where Pi is a function of the transverse co-ordinate eonly.
By expressing the load system in this form, statically correct solutions to the equilib

rium equations (2), which also satisfy the boundary conditions along the supported
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edges of the slab, will obviously be obtained if the stress resultants are expressed as
corresponding Fourier series of the form

oc

M x = L: M x , sin il]
i~ 1

00

My = L: MYi sin il]
j~ 1

00

M xy = M XYo + .L: M XYi cos il]
j~ 1

00

Sx = Sxo + L: SXi cos il]
i~ 1

Sy = L: SYi sin il]
i~ 1

(9)

in which the coefficients of the series are again functions of the transverse co-ordinate ~

only.
Equations (9) satisfy Kirchhoff's conditions. If shear deformations are considered,

satisfaction of the appropriate boundary conditions (4) will be obtained if M xyO is expressed
in terms of the functions Mxyi ' Initially, shear deformations will be neglected, and
Kirchhoff's boundary conditions are used

Substitution of equations (8) and (9) into the equilibrium conditions (2) yields three
equations which must be true for every spanwise position on the slab. Hence, equating
coefficients of corresponding terms, and solving the resulting set of equations, the stress
resultants may be expressed in terms of chosen functional coefficients as

~ { 2
d2F

j dR j 22} . .
M x = j:--1 rj de +2rjdf+pjc ri SInll]

OJ

My = L: Fi sin il]
i~ 1

OJ

M xy = S+ L: Ri cos il]
j~ 1

~ 1 { 2d2Fi dRi 22} . 1 dS
Sx = i~l cr

i
ri d~2 +rid[+ PiC ri cos II] -~ d~

~ 1 { dF j
}.

Sy = .'.... ---: ri-di< +Ri SIn il]
,~1 cr, ..

where rj = l/nic, and the unknown functional coefficients are defined as

F j = M yi , Ri = M xyj , S = M xyo '

(10)

The stress-strain relationships for an orthotropic plate may be expressed in the form

ax = Exex+Exyey

a y = Exyex+Eyey

Lxy = GXYYXY
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D = GxylJ
xy 12

D = Eyt
J

y 12'

where a", ay and 't"y are the direct and shear stresses, e", ey and )'"y are the corresponding
strains, and E", Ey, Exy and GXY are elastic moduli, related to the flexural and torsional
rigidities of equations (7) by

D = Ext
J

x 12'

(11)

in which t is the slab thickness.
By using average stiffness values for any stiffened or composite slab or grid, thE': physical

structure may be transformed into an equivalent orthotropic plate.
The strain energy due to bending and twisting of the plate then becomes

J"Jl6cl 2 2 2
U = -J {A 1M x +A2M y+2A12MxMy+AJMxy} d1] d~

nt 0 -1

in which

Al = ~Ey,

1
AJ =-,

Gxy

The strain energy coefficients A, introduced here for simplicity, are given by

Al kDy, A 2 = kD", A12 -kD1 ,

}
and (12)

A = k(D"Dy-Di) where k = 12( 1 )
J D ' J 2 •

xy t DxDy-D I

(13)

On substituting equations (10) into (11), followed by integration over the span of the
slab, the strain-energy integral reduces to

_3clJl { ~ ( 2d2F; dR, 2 2)2
U - f3 -1 Al ;~l r; d~2 +2r'd~ +p;c r;

~ 2 ~ ( 2d
2
F; dR; 2 2)

+A2 j~'t F j +2A12 i~1 F j ri de +2r i(if+p;c r;

+AJ (28
2+ Jl Rf)} d~.

The strain energy in the plate must be a minimum On minimizing by the calculus of
variations, the necessary condition that the integral (13) is a minimum is that the functions
F; and R i satisfy a set of ordinary linear differential equations of the form

(A 1rtD4 + 2A12rfD2 + A2)F;+2(A1rrDJ + A12r;D)R; . -(A1rfD2+Adp;e2rf (14)

2(A1rrDJ +A 12r;D)F;+(4A 1rfD2-AJ)R; -2Alc2rrDp; (15)

in which, for convenience, the operator D = d/d~ is used, and i is any integer.
In addition, it .is found that the function S vanishes.
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(16)

(l7a)

The required boundary conditions follow naturally from the integrated terms,
evaluated at the limits of the expansion, in the minimizing procedure, in accordance with
the known physical edge conditions along each free edge (equations (5». In this case, it is
found that the necessary boundary conditions become, at ~ = ± 1,

dF.
Fi = rid~'+2Ri = O.

Equations (16) express the conditions of vanishing normal bending moments and
equivalent shear forces along the free edges of the slab.

Solution of equations (14) and (15)

The simplest form of solution of equations (14) and (15) is obtained by considering
the applied load system as a superposition of symmetric and anti-symmetric components
with respect to the central axis Ox. In that case, for a symmetric load system, the functions
F i will be symmetric and the functions R i anti-symmetric, whilst the converse will be true
for an anti-symmetric load system. In each case, only two boundary conditions need be
satisfied, instead of the four normally specified

The solution of equations (14) and (15) will consist of two parts, the complementary
function solution (independent of the load system), and the particular integral solution
(which depends on the form of the applied load~

(a) Complementary function solution

For the range of relative stiffness values encountered in practical orthotropic slab
structures, the roots of the auxiliary equation, corresponding to equations (14) and (15),
will always be complex conjugate (except for the particular case of isotropic slabs, when
repeated roots are obtained), and the complementary function solutions may always be
expressed in the following forms:

(i) Symmetric load system

Fi = K 1,{B 1 cosh Si~ cos ti~ - B2 sinh Si~ sin ti~}

+K2,!{B1 sinh Si~ sin ti~+B2 cosh Si~ cos ti~}
t i

Ri = K 1,{B3 sinh Si~ cos ti~+B4 coshSi~ sin ti~}

+ K 2+{ B 3 cosh Si~ sin ti~ - B4 sinh Si~ cos ti~}
I

(ii) Anti-symmetrical load system

Fi = K 3'f.{B1cosh Si~ sin ti~ +B2sinh Si~ cos tie},
+K4,{B 1 sinh Sie cos tie-B2 cosh Sie sin tie}

R i = K 3,f.{B 3 sinh Si~ sin tie - B4 cosh Sie cos tie},

(17b)

(18a)

(18b)
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in which (X and f3 are given by

Sj = rx/r i , t; = f3/r j ,

B l = 4A l (rx 2_f32)-A 3

B2 = 8A l rxf3

B3 = 2{A,(3f32_ rx2)-A I2 }rx

B4 = 2{A,(3rx2-f32)+An}f3.

In the particular case of an isotropic slab, the stiffnesses reduce to

I-v
Dxy = -2-D
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where D is the flexural rigidity of the plate, equal to Et3/12(1 - v2
), where E is Young's

modulus and v is Poisson's ratio for the material In that case, repeated roots are obtained
with ex = 1 and f3 = O.

It is worth noting that repeated roots may also be obtained with orthotropic plates
in which particular relationships occur between the different stiffnesses. Such a case
occurs with the stiffness values suggested by Timoshenko and Woinowsky-Krieger [2]
for reinforced concrete slabs with two-way reinforcement If Dx and Dy are the equivalent
flexural stiffnesses in the spanwise and transverse directions, the other stiffnesses are given
approximately by

and
I-v

Dxy = TJ(DxDy)

where Vc is Poisson's ratio for concrete.
Equations (17) and (18) have been expressed in such a form that they'reduce to the

required mathematical solutions in the limiting case of repeated roots.

(b) Particular integral solutions

The particular integral solutions will depend on the load system, and no general
solution can be given However, since the main problem in the analysis of bridge decks
is the determination of the stress distribution due to a concentrated load applied at any
given position on the slab, the particular integral is deri'ved for this load form.

A concentrated load of magnitude P applied at any point (Xl' Yd on the slab may
be considered as a superposition of a symmetric system, consisting of loads of magnitudes
P/2 at the positions (Xl' YI) and (Xl' - yd, and an anti-symmetric system, consisting of
a load P/2 at (Xi> yd and a load -P/2 at (Xl> - Yl)'

(i) Symmetrical load system. A symmetrical two-point load system may be expressed as a
Fourier series of the form given in equation (8) as

00

P = L Pi sin itT
1=1
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where
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Pi = -t
P

{I +2 .f: cosjn~ 1 cosjn~} sin i'71
c J= 1

where the point loads, of magnitudes P/2, are applied at the posItIOns (1'/1, ~1)
('71' - ~ 1), defined in terms of the non-dimensional co-ordinate system used.

Particular integral solutions of equations (14) and (15) may then be shown to be

{ ~ (1 z .. ) All}F i = Qi 2.1."" A .(gj -A1Z/AI)cosJn~1 cosJn~ --
J=l tiJ Az

{

OCJ 1 (A iz Az~ .}Ri = 4Qi I A ---- gjCosjn~I smjn~
j= 1 tij A IA 3 A 3

in which, for convenience, the following are used

(19)

and

(20)

gj = jnr i

Q (
c) z . .

i = P I r i sm 1'71

4 (All A z Aiz) zAj = gj -2 --2-+2--- gj +Az/A 1•
A 1 A 3 A 1A 3

(ii) Anti-symmetrical load system. The corresponding anti-symmetrical load system may
be expressed as

P = I Pi sin i'7
i= 1

where
2P OCJ

Pi = -t sin i'71 I sinjn~ 1 sinjn~
c j= 1

(21)

(22)

the point loads, of magnitude P/2 and - P/2, being applied at the positions ('71' ~1) and
('71' - ~1) respectively.

Particular integral solutions of equations (14) and (15) may then be expressed as

F i = 2Qi {L1
j
(gJ -A12/Ad sinjn~I Sinjn~}

(Az Ah){ g. . }R i = 4Qi ---A L A,J smjn~I cosjn~.
A 3 Al 3 tij

Evaluation of integration constants K
(i) Symmetrical case. On substituting the solutions for F i and R; from equations (17)
and (20) into the boundary conditions (16), the constants K I , and K 1i are found to be

(23a)

(23b)



where

and
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(ii) Anti-symmetrical case. Substitution of the anti-symmetrical solutions (18) and (21)
into equations (16) yields the constants K 3i and K 4i :

K 3i = K(}4 i !!..{B2 cosh Sj sin ti-B sinh SjCOS tJ
3 rj

(24)

where

(}3 = B1 cosh Si sin t j +B2 sinh Sj cos t j

(}4 = B1(a. sin tjcos t j- f3 sinh Sj cosh t j ) + B 2(a. sinh Sj cosh Sj+ f3 sin t jcos tJ
The complete solution for a single point load is then obtained by superposition of

the symmetrical and anti-symmetrical systems.
The other commonly considered cases of a uniformly distributed load, and a line

load parallel to the supports, are treated in Appendix 1.

The influence of shear deformations

The influence of shear deformations may be included in the analysis by adding the
strain energy of shear to that of bending and twisting in equation (11). If Reissner's
boundary conditions, equations (4), are then utilized, the function S in equations (10)
must be expressed as

00

S = - L: Rj(-l)j.
i= 1

The analysis may then be followed through as before. In this case, a sixth-order set
of governing equations is obtained, enabling all three physical free-edge boundary con
ditions of equations (3) to be satisfied. However, because of the form of the function S
above, the set of equations no longer falls into groups of two independent equations,
and the complete set must be solved simultaneously. Consequently, it is not possible to
obtain general solutions, and the analysis is not proceeded with any further here.

NUMERICAL EXAMPLE

The rate of convergence of the solution is examined through the typical example of
an isotropic square bridge slab carrying a central point load. The low span/width ratio
is chosen deliberately to produce a marked transverse stress variation, and provide a
good test of the analysis. The variation of the central transverse moment My, as the
number of terms in the solution is increased, is shown in Fig. 2. It was found that the
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FIG. 2. Convergence of central transverse moment.

complementary function component was negligible. except for the first term, so that
computations were much simplified as only the particular integral component of the
solution was required to be evaluated.

The value given by Holl [3J, obtained by a difference method, is indicated for com
parison.

DISCUSSION

A method has been presented for the direct determination of the bending and twisting
moments, and shear forces, in right orthotropic bridge decks.

The two-dimensional partial differential equation of plate theory is rendered uni
directional by the assumption that the stress-resultants may be expressed as Fourier
series in the spanwise co-ordinate, the coefficients of the series being functions of the
transverse position only. The problem reduces to the solution of a set of ordinary linear
differential equations, in groups of two, each containing only two functions, enabling
solutions to be obtained in general terms as the summation of infinite series. As the
series converge fairly rapidly, a few terms only are sufficient to yield accurate. results.

Although the equations produced are lengthy, they are simpler than those obtained
by Massonnet, by virtue of the fact that the solution is obtained as a superposition of
symmetrical and anti-symmetrical systems. The solution of the governing equations in
the analysis yields directly the transverse bending moments and twisting moments, as a
set of stress resultant functions FE and Ri . The spanwise moments are obtained by
differentiation of these functions, and hence converge less rapidly; consequently, the
method is most suitable for the determination of the moments My and M:w This is of
interest, as the conventional method of analysis is more suitable for the determination
of the spanwise moments, M x •
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The results may be modified considerably if certain simplifying assumptions are
made. With reinforced concrete structures, it is frequently assumed that the value of
Poisson's ratio is effectively zero, in which case the coefficient A 12 vanishes. The results
may also be applied to the analysis of grillage structures, in which it is often assumed
that no torsion occurs, and vertical forces only are transmitted between the longitudinal
and transverse members. In that case, there are no twisting moments, and hence the
functions Rand S vanish in equations (10), and equation (15) is no longer applicable.
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APPENDIX 1

(25)
R1 =0

Solutions for other load cases

The complementary function solutions given in equations (17) and (18) depend only
on the stiffness and geometrical properties of the slab, and are independent of the applied
load system. Consequently, only the particular integral solutions (20) and (22) need be
altered to cater for other loading cases.

Two further cases are considered here, the uniformly distributed load, and the line
load applied parallel to the supports, both symmetrical systems.

(a) Uniformly distributed load. If the slab is subjected to a uniformly distributed load of
intensity Po, particular integral solutions of equations (14) and (15) may be expressed as

F 4A12 c2rf. 2(in)
1 = ---Po-.-sm -

A2 m 2

(26)
R1 =0

(b) Line load. If a line load of total magnitude P is applied parallel to the supports at
any station til' particular integral solutions are

Au (c) 2 ••F; = - A
2

P I rl sm ttl I

Evaluation of constants K

On satisfying the boundary conditions at the free edges of the plate, the constants
K I , and K 21 are again related by equation (23a~ Equation (23b) must be replaced by

01K 2 =-P-
I O2 '

where F1 must be replaced by the appropriate expression in equations (25) or (26).
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(Received 8 July 1965)

Resume-La determination directe des moments de flexion et de torsion, et des forces de cisaillement des
tabliers de ponts orthotropes, est etudiee dans cet article. L'equation aux derivees partielles de Ia theorie des
plaques est ramenee a une serie d'equations differentielles ordinaires du premier degre, en groupe de deux,
chaque groupe ne comprenant que deux fonctions inconnues, en supposant que les resultantes de contrainte
peuvent s'exprimer en suites de Fourier, en coordonnee dans Ie sens de la travee, les coefficients de la suite
etant fonction de la position transversale seulement. Les suites sont choisies pour satisfaire les conditions
d'equilibre de la plaque, Ie coefficient inconnu etant obtenu par Ie Principe du Moindre Effort.

Zusammenfassung-Die direkte Bestimmung der Biegungs und Drehmomente und der Scherkrlifte in ortho
tropen Briickenfahrbahnen ist in dieser Abhandlung erwogen. Die partielle Differentialgleichung der Platten
theorie ist zu einem Satz von gewohnlichen linearen Differentialgleichungen reduziert in Gruppen von zwei,
woven jede Gruppe nur zwei unbekannte Funktionen enthlilt, in der Annahme das die Beanspruchungs
resultanten als Fouriersche Reihen in spannweisen Koordinaten ausgedriickt werden konnen, die Koeffizienten
der Reihen sind nur Funktionen der Querlage. Die Reihen worden gewlihlt urn die Gleichgewichtsbedingungen
zubefriedigen, die unbekannten Koeffizienten werden durch das Gesetz der Geringsten Arbeit erhalten.

AOcrpaKT-B :noil: CTan.e o6cylK)l.aeTCJl npJlMOe onpe)l.eneHHe MOMeHTOB crH6aHHlI, Kpy'leHHJI H cpe3bI
BaIOIllHX CHn B OpTOTpOllH'leCKHX MOCTOBblX Hacnmax. qacTHoe )l.H4I4IepeHl.\HanbHoe ypaBHeHHe TeopHH
nnaCTHHbI YMeHbIIieHo .1\0 nO)l.60pa 06bIKHOBeHHbiX nHHeil:Hblx )l.H4I4IepeHI.\HanbHbIX ypaBHeHHil:, B rpynnax
no )l.Ba, KalK)l.aJl rpynna cO)l.eplKHT TonbKO )l.Be HeH3BeCTHbiX 41YHKI.\HH, npe.1\nonaraJl, 'ITO paBHO.1\eil:cT
ByIOmHe HanpJllKeHHJI MoryT 6blTb BblpalKeHbI, KaK cepHH <Ilypbe (Fourier) B )l.yro06pa3Hoil: KOOp)l.HHaTe,
H K034141HI.\HeHTbI cepHil: npe.1\CTaBnJlIOT 41YHKI.\HH TonbKO nonepe'lHoil: n03HI.\HH. CepHH BbI6paHbI )l.nJl
y)l.OBneTBopeHHJI ycnoBHil: paSHOBeCHli )l.nJl nnaCTHHbI, HeH3BeCTHble K034141HI.\HeHTbI nonY'leHbI no npHH
I.\Hny HaHMeHbIIieil: pa6oTbI.


